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Lecture 6 – Thursday November 10, 2016 

State Estimation-II 
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Objectives 

When you have finished this lecture you should be able to: 

• Understand Kalman filter and its roles in state estimation. 

• Understand Markov process and Markov models. 
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• Kalman Filters 

• Markov Models 

• Summary 

Outline 
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• In 1960, R.E. Kalman published his famous paper describing a 

recursive solution to the discrete data linear filtering problem. 

• This recursive algorithm is known as the Kalman Filter (KF) and 

it is used to generate optimal estimate of the states of a system 

from a series of incomplete and noisy measurements. For linear 

system and white Gaussian noise, Kalman filter is best estimate. 

• There are many applications for Kalman Filters: 

◊ Noise filtration 

◊ Tracking objects 

◊ Navigation of aircrafts and vehicles 

◊ Computer Vision applications,  ….. 

Kalman Filters 

Rudolf Emil Kálmán  
(1930-  ) 

Hungarian-American electrical 
engineer, mathematical system 
theorist, and college professor 
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Kalman Filters 

• KF Algorithm 

◊ A linear system can be described using two equations: 

 State Equation: 111   tttttt wuBxAx
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Kalman Filters 

• KF Algorithm 

◊ The equations of the Kalman Filter are divided into two main 
groups: 

 Prediction Equations : 

– This is called the ‘prediction’ stage. 

– It projects forward in time the current state to get a priori 
estimates for the next time step. 

 Correction Equations : 

– This is called the ‘correction’ stage 

– It  is responsible for the feedback.  

– It incorporates  a new measurement into the a priori 
estimate to obtained an improved a posteriori estimate. 
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Kalman Filters 

• KF Algorithm 

◊ Predictor Equations 

PREDICTED STATE 
Projecting state 

estimate from time t-1 
to t 

Using state 
estimate from time 

t-1 

ttttttt uBxAx   1|11|
ˆˆ

  Subscripts are as follows:  

•   t|t represents the current time period,  

•   t-1|t-1 previous time period 

•   t|t-1 are intermediate steps. 
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Kalman Filters 

• KF Algorithm 

◊ Corrector Equations 

Measurement 
Variance Kalman 
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Kalman Filters 

• KF Algorithm 
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Kalman Filters 

• KF Algorithm 

Understand the situation 

Model the State Process 

Model the Measurement Process 

Model the Noise 

Test the Filter 
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Example: Mobile robots are equipped with various sensor types 

for measuring distances to the nearest obstacle around the robot 

for navigation purposes. These sensors include Sonar based on 

(Sound Navigation & Ranging) Sensors, Laser Sensors based 

on LIDAR (LIght Direction And Ranging) and Infrared 

Sensors based on LADAR (RAdio Direction And Ranging). 

• Assume that a noisy sonar sensor is 

used to estimate the distance from the 

robot to an obstacle. 

• Assume that the distance is static and 

theoretically L=100 cm. 

Kalman Filters 
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• Model the state process 

The state variable        of the system is the distance to the 

obstacle.  

Since it is a constant model, therefore,        is 1 for all time t.  

The input of the system         and matrix         are zero. 
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tBtu

1|11|

1|11|

ˆˆ

ˆˆ









tttt

ttttttt

xx

uBxAx

Kalman Filters 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 17/22 17 L6, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Model the measurement process 

◊ In this model, the         represents the distance to the obstacle 

as measured by the sensors. 

◊ It is assumed the measurement is exactly the same scale as 

the estimate         and so         is 1. 
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Kalman Filters 
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• Model the noise 

◊ For this model, we are going to assume that there is a 

Gaussian white noise from the measurement which has a 

standard deviation of 0.5 cm. Therefore,  

 

◊ The process noise  is assumed to have a standard deviation 

of 0.01 cm, therefore,  

225.0 cmrRt 

20001.0 cmqQt 

Kalman Filters 
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• Predict equations: 

1|11|
ˆˆ

  tttt xx 0001.01|11|   tttt PP

• Update equations: 
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• Initialization: 
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Kalman Filters 
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• 1st Iteration 
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Kalman Filters 
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• 2nd Iteration 
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Kalman Filters 
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• 3rd Iteration 
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Kalman Filters 
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• 4th Iteration 
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Kalman Filters 
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Iteration Measurements State Covariance Gain 

0 - 0 1000 0 

1 99.17 99.15 0.2 0.9998 

2 100.60 99.79 0.1111 0.4446 

3 100.12 99.80 0.0770 0.3070 

4 99.61 99.82 0.0589 0.2357 

Kalman Filters 
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• What if our system is a non-linear system?! 

◊ Such as having a constant distance to the obstacle but the 

obstacle is not steady, it is “vibrating”. 

◊ The vibration can be modeled as a sine wave with equation 

 

• In this case, we will have to use a non-linear estimator such as 

the Extended Kalman Filter (EKF). 

ltrcL  )2sin( 

For more information:  

[1]  F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forsell, J. Janson, R. Karlsson and P. Nordlund, “Particle 
Filters for Positioning, Navigation and Tracking,”  in IEEE Transactions on Signal Processing. 

[2]  F. Germain and T. Skordas, “A Computer Vision Method for Motion Detection using Cooperative Kalman 
Filters”. 

See papers on the course website. 

Kalman Filters 
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• Kalman Filters 

• Markov Models 

• Summary 

Outline 
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• Markov Property 

If the random process is characterized as memoryless: 

the next state depends only on the current state and not 

on the sequence of events that preceded it. This specific 

kind of “memorylessness” is called the Markov 

property.  

Russian 
mathematician  
Andrey Markov 

(1856-1922) 

Markov Models 

Future is independent of the past given the present  

Present Future Past 

However, past can be used for learning or prediction 
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• Markov Property 

Markov Property: The state of the system at time t+1  

depends only on the state of the system at time t. 

]  x X |  x P[X ]  x X ,  x X , . . . ,  x X ,  x X |  x P[X tt11t00111-t1-ttt11t   tt

Xt=1 
Xt=2 Xt=3 Xt=4 Xt=5 

Markov Models 

First order dependencies  
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• Markov Property 

◊ Higher order models remember more “history” 

◊ Additional history can have predictive value 

◊ Example: 

 Predict the next word in this sentence fragment  

Markov Models 

“… the__” (duck, end, grain, tide, wall, …?) 

 Now predict it given more history 

“… against the__” (duck, end, grain, tide, wall, …?) 

 Now predict it given more history 

“swim against the__” (duck, end, grain, tide, wall, …?) 
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◊ The probability that we’re in state si at time t+1 only 

depends on where we were at time t: 

 

 

 

◊ Given this assumption, the probability of any sequence is 

just: 

)|()...|( 111 tittit XsXPXXsXP  

)|(),...,( 1

1

1 



 ii

T

i

T XXPXXP

• Markov Properties-I: Limited horizon 

Markov Models 
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• Markov Property-II: Stationary Assumption 

Probabilities are independent of t when process is 

“stationary” so,  

ijitjt pXXXXP  ]|[   t,allfor 1

This means that if system is in state i, the probability that the 

system will next move to state j is pij , no matter what the value 

of t is. 

 

The probability of being in state si given the previous state 

does not change over time. 

Markov Models 
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Markov Models 

Assume that once a day (e.g. in the 

morning), the weather is observed 

as being one of the following: 

◊ State 1: cloudy 

◊ State 2: sunny 

◊ State 3: rainy 

◊ State 4: windy 

• Weather Predictor Example 

Given the model, it is now possible to answer several interesting 

questions about the weather patterns over time. 

[3] 
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Markov Models 

What is the probability to get the 
sequence “sunny, rainy, sunny, 
windy, cloudy, cloudy” in six 
consecutive days? 

• Weather Predictor Example 

O={sunny, rainy, sunny, windy, 
cloudy, cloudy)={2,3,2,4,1,1} 

Markov model 

𝑂 𝐴, 𝜋 = 𝑃 2,3,2,4,1,1 𝐴, 𝜋            
= 𝑃 2 𝑃 3 2 𝑃 2 3 𝑃 4 2 𝑃 1 4 𝑃 1 1
= 𝜋𝑥2. 𝑎23. 𝑎32. 𝑎24. 𝑎41. 𝑎11 

[3] where A and  are transition matrix and initial state respectively. 
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Markov Models 

• Weather Predictor Example 

In a general case, this 
calculation of the probability 
for a state sequence 
X={x1,x2,...,xT) will be: 

𝑃 𝑋 𝐴, 𝜋
= 𝜋𝑥1

. 𝑎𝑥1𝑥2
. 𝑎𝑥2𝑥3

… 𝑎𝑥𝑇−1𝑥𝑇
 

[3] 
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• Weather Predictor Example 

Given that the weather on day 1 is 
sunny, what is the probability 
(according to the model) that the 
weather for the next 6 days will be  

Markov Models 



















8.01.01.0

2.06.02.0

3.03.04.0

}{ ijaA

“sunny-sunny-rainy-cloudy-

cloudy-sunny”  

Given: 

S1: rainy 
S2: cloudy 
S3: sunny 
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S3S3  S3  S1 S2 S2 S3 

P(s3) P(s3|s3) 

P(s3|s3) 

P(s1|s3) 

P(s2|s1) 

P(s2|s2) 

P(s3|s2) 

P(X|M)=P(s3) P(s3|s3)2P(s1|s3) P(s2|s1) P(s2|s2) P(s3|s2) 
              =10.820.10.30.60.2 

• Weather Predictor Example 

Markov Models 

S1: rainy 
S2: cloudy 
S3: sunny 

Initial state probability 
for state i is i = P(x1 = i) 
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• Coke vs. Pepsi Example 

Given that a person’s last cola purchase was Coke,                          

there is a 90% chance that his/her next cola purchase                          

will also be Coke. 

 If that person’s last cola purchase was Pepsi, there is an 80% 

chance that his/her next cola purchase will also be Pepsi. 

coke pepsi 

0.1 0.9 0.8 

0.2 

Markov Models 
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• Coke vs. Pepsi Example 

Given that a person is currently a Pepsi purchaser, what is the 

probability that she will purchase Coke two purchases from 

now? 

Markov Models 

coke pepsi 

0.1 0.9 0.8 

0.2 

p(X|M) = p(X = {P,C,C}|M) 

= p(P) p(C|P)p(C|C) 

=10.20.9=0.18 
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• Coke vs. Pepsi Example 

Given that a person is currently a Coke drinker, what is the 

probability that she will purchase Pepsi three purchases 

from now? 

Markov Models 

coke pepsi 

0.1 0.9 0.8 

0.2 

p(X|M) = p(X = {C,P,P,P}|M) 

= p(C) p(P|C)p(P|P) p(P|P) 

=10.10.80.8=0.064 
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• A Markov model is a probabilistic model of symbol 

sequences in which the probability of the current event is 

conditioned only by the previous event. 

• Markov Models 

System* System state is 
fully observable 

System state is 
partially observable 

System is 
autonomous 

Markov Chain 
(MC) 

Hidden Markov Model 
(HMM) 

System is 
controlled 

Markov Decision 
Process (MDP) 

Partially Observable 
Markov Decision Process 
(POMDP) 

Markov Models 

*whether the system is to be adjusted on the basis of observations made. 
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• Markov Chain 

Markov chain is a “memoryless random process” 

Transitions depend only on 

◊ current state and  

◊ transition probabilities matrix 

Markov Models 
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• Markov Chain: Formal Definition 

◊ A Markov Model is a triple (S, , A) where: 

– S is the set of states 

–  are the probabilities of being initially in some state 

– A are the transition probabilities. 

Markov Models 
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• Markov Chain: Economy Example 

The terms bull market and bear market describe upward and 

downward market trends, respectively. The states represent 

whether the economy is in a bull market, a bear market, or a 

recession, during a given week. 

S={1=bull market,                                                                       

2=bear market,                                                           

3=recession} 

Statues of the two symbolic beasts of finance, the bear and 
the bull, in front of the Frankfurt Stock Exchange. 

Markov Models 

[4] 
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According to the figure, a bull week is followed by another bull 

week 90% of the time, a bear market 7.5% of the time, and a 

recession the other 2.5%.  

Markov Models 

• Markov Chain: Economy Example 

[4] 
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The transition matrix is 



















5.025.025.0

05.08.015.0

025.0075.09.0

P

Markov Models 

• Markov Chain: Economy Example 

[4] 
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From this figure it is possible to 

calculate, for example, the long-

term fraction of time during 

which the economy is in a 

recession, or on average how 

long it will take to go from a 

recession to a bull market.  

Markov Models 

• Markov Chain: Economy Example 

[4] 
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Markov Models 

Using the transition probabilities, 



















5.025.025.0

05.08.015.0

025.0075.09.0

P

We will regard bull market as 1, bear market as 2 and recession 
as 3. 

The steady-state probabilities indicate that 62.5% of weeks will 

be in a bull market, 31.25% of weeks will be in a bear market 

and 6.25% of weeks will be in a recession. 

3321

2321

1321

5.025.025.0

05.08.015.0

025.0075.09.0

PPPP

PPPP

PPPP







• Markov Chain: Economy Example 

[4] 
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Markov Models 

The distribution over states can be written as a stochastic row 

vector x with the relation x(n + 1) = x(n)P.  

So if at time n the system is in state 2=bear then 3 time 

periods later at time n + 3 the distribution is 

    3)(2)()1()2()3( PxPPxPPxPxx nnnnn  

 

 07425.056825.03575.0

5.025.025.0

05.08.015.0

025.0075.09.0

010

3





















• Markov Chain: Economy Example 

[4] 
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Markov Models 

Suppose a landmine detection robot 

wants to predict the status of a cell 

in a minefield. The possible 

predictions are: 

 Mine_free 

 Surface_mine 

 Buried_mine 

Buried mine 

Surface mine 

Mine-free Cell 

• Markov Chain: Landmine Detection 

Minesweepers: Towards a Landmine-free World:  
http://www.landminefree.org/  

[5] [6] 
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Markov Models 

The robot predicts the next cell 

status based on the status of the 

previous cell. 

 If the previous cells were mine-

free, the next cell is likelier to 

have surface or buried 

mine. 

 How far back do we want to go  

to predict next cell’s status? 

• Markov Chain: Landmine Detection 

Buried mine 

Surface mine 

Mine-free Cell 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 53/22 53 L6, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

Markov Models 

 Statistical Landmine Model 

◊ Notation: 

– S: the state space, a set of possible values for the cell: 

{mine_free, surface, buried} 

– X: a sequence of random variables, each taking a value from S 

– k is an integer standing for cells, k[1,N] 

◊ (X1, X2, X3, ... XN) models the value of a series of random 

variables  

– each takes a value from S with a certain probability P(X=si) 

– the entire sequence tells us the status of cell over N cells. 

• Markov Chain: Landmine Detection 
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Markov Models 

 Statistical Landmine Model 

◊ If we want to predict the status of the cell k+1, our model 

might look like this: 

  

 

◊ e.g. P(cell status = Buried_mine), conditional on the 

status of the past k cells. 

◊ Problem: the larger k gets, the more calculations we have 

to make. 

)...|( 11 kkk XXsXP 

• Markov Chain: Landmine Detection 
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◊ This is essentially a transition matrix, which gives us 

probabilities of going from one state to the other. 

◊ We can denote state transition probabilities as aij (prob. of 

going from state i to state j). 

Markov Models 

 Concrete instantiation 

Cell k Cell k+1 

Mine_free Surface_mine Buried_mine 

Mine_free 0.1 0.3 0.6 

Surface_mine 0.5 0.2 0.3 

Buried_mine 0.4 0.5 0.1 

• Markov Chain: Landmine Detection 
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◊ Components of the model: 

1. states (s) 

2. transitions 

3. transition probabilities 

4. initial probability 

distribution for states 

Markov Models 

 Graphical View 

Mine_free 

0.1 

0.5 

0.3 

0.2 

0.3 

0.5 

0.1 

0.4 

0.6 

This is a non-deterministic finite 

state automaton. 

• Markov Chain: Landmine Detection 

Surface_mine 

Buried_mine 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 57/22 57 L6, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

 If the cell (Xk) is Mine-free, what’s the probability that the 

next cell (Xk+1) is Mine-free and the next cell after 

(Xk+2) is Buried-mine? 

 

Markov assumption 

Markov Models 

Xk+1 

Xk+2 

Xk 

)Mine_free|eBuried_min,Mine_free( 21   kkk XXXP

)Mine_free,Mine_free|eBuried_min()Mine_free|Mine_free( 121   kkkkk XXXPXXP

)Mine_free|eBuried_min()Mine_free|Mine_free( 121   kkkk XXPXXP

06.06.01.0 

• Markov Chain: Landmine Detection 
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Markov Models 

• In all previous examples, we assume that the state is fully 

observable. 

• Often we face scenarios where states cannot be directly observed. 

• To handle partially observable state, we have to use an extension 

called Hidden Markov Model (HMM). 
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• Kalman Filters 

• Markov Models 

• Summary 

Outline 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 60/22 60 L6, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Kalman filter is an optimal estimator – i.e infers parameters of 

interest from indirect, inaccurate and uncertain observations. It is 

recursive so that new measurements can be processed as they arrive. (cf 

batch processing where all data must be present). If all noise is Gaussian, 

the Kalman filter minimizes the mean square error of the estimated 

parameters. KF can be used for Robot Localization and Map building 

from range sensors/ beacons, determination of planet orbit parameters 

from limited earth observations and Tracking targets - eg aircraft, 

missiles using RADAR. 

• A Markov model is a probabilistic model of symbol sequences in which 

the probability of the current event is conditioned only by the previous 

event. 

Summary 
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